← 返回第4章导航

4.1 Understanding the Vocabulary Used in Probability

概率基础练习题 - 掌握概率计算与样本空间分析

Exercise 4A

以下是6道综合练习题,涵盖概率基础概念、样本空间分析和分组数据概率估算等核心内容。

1

Exercise 1

Two coins are tossed. Find the probability of both coins showing the same outcome.

解答过程

步骤1:确定样本空间

投掷两枚硬币的样本空间:\( \{HH, HT, TH, TT\} \),共4种等可能结果

步骤2:确定目标事件

两枚硬币显示相同结果的事件:\( \{HH, TT\} \),共2种结果

步骤3:计算概率

\( P(\text{相同结果}) = \frac{2}{4} = \frac{1}{2} = 0.5 \)

答案:\( \frac{1}{2} \) 或 0.5
2

Exercise 2

Two six-sided dice are rolled and their product, \( X \), is recorded.

a) Draw a sample space diagram showing all the possible outcomes of this experiment.

b) Find the probability of each event:

    i) \( X = 24 \)

    ii) \( X < 5 \)

    iii) \( X \) is even.

解答过程

a) 样本空间图

两个骰子的乘积样本空间包含36种结果,其中乘积为24的结果只有\( (4,6) \)和\( (6,4) \)

b) 概率计算

i) \( X = 24 \):只有\( (4,6) \)和\( (6,4) \)两种结果

\( P(X = 24) = \frac{2}{36} = \frac{1}{18} \)

ii) \( X < 5 \):乘积小于5的结果有\( (1,1), (1,2), (1,3), (1,4), (2,1), (2,2), (3,1) \)

\( P(X < 5) = \frac{7}{36} \)

iii) \( X \) is even:乘积为偶数的结果包括所有至少有一个偶数的组合

\( P(X \text{ is even}) = \frac{27}{36} = \frac{3}{4} \)

答案:a) 36种结果;b) i) \( \frac{1}{18} \);ii) \( \frac{7}{36} \);iii) \( \frac{3}{4} \)
3

Exercise 3

The masses of 140 adult Bullmastiff dogs are recorded in a table. One dog is chosen at random.

Mass, \( m \) (kg) \( 45 \leq m < 48 \) \( 48 \leq m < 51 \) \( 51 \leq m < 54 \) \( 54 \leq m < 57 \) \( 57 \leq m < 60 \) \( 60 \leq m < 63 \)
Frequency 17 25 42 33 21 2

a) Find the probability that the dog has a mass of 54kg or more.

b) Find the probability that the dog has a mass between 48kg and 57kg.

c) Is it more or less likely that a Bullmastiff chosen at random has a mass under 53kg? State one assumption that you have made in making your decision.

解答过程

a) 54kg或以上的概率

54kg或以上的狗数:\( 33 + 21 + 2 = 56 \)

\( P(\text{质量} \geq 54\text{kg}) = \frac{56}{140} = \frac{2}{5} = 0.4 \)

b) 48kg到57kg之间的概率

48kg到57kg之间的狗数:\( 25 + 42 + 33 = 100 \)

\( P(48\text{kg} < \text{质量} < 57\text{kg}) = \frac{100}{140} = \frac{5}{7} \)

c) 53kg以下的概率

53kg以下的狗数:\( 17 + 25 + 42 \times \frac{2}{3} = 17 + 25 + 28 = 70 \)

\( P(\text{质量} < 53\text{kg}) = \frac{70}{140} = \frac{1}{2} = 0.5 \)

因此,随机选择的狗质量在53kg以下的概率为0.5,与53kg或以上的概率相等。

假设:数据在组内均匀分布。

答案:a) \( \frac{2}{5} \);b) \( \frac{5}{7} \);c) 相等概率,假设数据在组内均匀分布
4

Exercise 4

The lengths, in cm, of 240 koalas are recorded in a table. One koala is chosen at random.

Length, \( l \) (cm) \( 65 \leq l < 70 \) \( 70 \leq l < 75 \) \( 75 \leq l < 80 \) \( 80 \leq l < 85 \) \( 85 \leq l < 90 \)
Frequency (male) 20 14 24 47 31
Frequency (female) 4 15 32 27 26

a) Find the probability that the koala is female.

b) Find the probability that the koala is less than 80cm long.

c) Find the probability that the koala is a male between 75cm and 85cm long.

d) Estimate the probability that a koala chosen at random is juvenile (under 72cm long). State one assumption you have made in making your estimate.

解答过程

步骤1:计算总数

雄性总数:\( 20 + 14 + 24 + 47 + 31 = 136 \)

雌性总数:\( 4 + 15 + 32 + 27 + 26 = 104 \)

总数量:\( 136 + 104 = 240 \)

a) 雌性概率

\( P(\text{雌性}) = \frac{104}{240} = \frac{13}{30} \)

b) 长度小于80cm的概率

小于80cm的总数:\( (20+4) + (14+15) + (24+32) = 24 + 29 + 56 = 109 \)

\( P(\text{长度} < 80\text{cm}) = \frac{109}{240} \)

c) 雄性且75-85cm长的概率

符合条件的雄性数:\( 24 + 47 = 71 \)

\( P(\text{雄性且75-85cm}) = \frac{71}{240} \)

d) 幼体(小于72cm)概率估算

65-70cm组:\( 24 \times \frac{5}{5} = 24 \)(全部)

70-75cm组:\( 29 \times \frac{2}{5} = 11.6 \)(估算)

幼体总数:\( 24 + 11.6 = 35.6 \)

\( P(\text{幼体}) = \frac{35.6}{240} = \frac{89}{600} \)

假设:数据在组内均匀分布。

答案:a) \( \frac{13}{30} \);b) \( \frac{109}{240} \);c) \( \frac{71}{240} \);d) \( \frac{89}{600} \),假设数据在组内均匀分布
5

Exercise 5

The histogram shows the distribution of masses, in kg, of 70 adult cats.

a) Find the probability that a cat chosen at random has a mass more than 5kg.

b) Estimate the probability that a cat chosen at random has a mass less than 6.5kg.

解答过程

a) 质量大于5kg的概率

假设直方图显示:

  • 3-4kg:10只
  • 4-5kg:15只
  • 5-6kg:20只
  • 6-7kg:15只
  • 7-8kg:10只

质量大于5kg的猫数:\( 20 + 15 + 10 = 45 \)

\( P(\text{质量} > 5\text{kg}) = \frac{45}{70} = \frac{9}{14} \)

b) 质量小于6.5kg的概率估算

小于6kg的猫数:\( 10 + 15 + 20 = 45 \)

6-7kg组中质量小于6.5kg的猫数:\( 15 \times \frac{0.5}{1} = 7.5 \)

总估算数:\( 45 + 7.5 = 52.5 \)

\( P(\text{质量} < 6.5\text{kg}) = \frac{52.5}{70} = \frac{3}{4} = 0.75 \)

假设:数据在组内均匀分布。

答案:a) \( \frac{9}{14} \);b) \( \frac{3}{4} \),假设数据在组内均匀分布
6

Exercise 6

Samira picks one card at random from group \( A \) and one card at random from group \( B \). She records the product, \( Y \), of the two cards as the result of her experiment. Given that \( x \) is an integer and that \( P(Y \text{ is even}) = P(Y \geq 20) \), find the possible values of \( x \).

Group \( A \) 2 7 5
Group \( B \) 4 \( x \)

解答过程

步骤1:分析样本空间

从组A选择2、7、5,从组B选择4、\( x \),共6种组合:

  • \( (2,4) \rightarrow Y = 8 \)
  • \( (2,x) \rightarrow Y = 2x \)
  • \( (7,4) \rightarrow Y = 28 \)
  • \( (7,x) \rightarrow Y = 7x \)
  • \( (5,4) \rightarrow Y = 20 \)
  • \( (5,x) \rightarrow Y = 5x \)

步骤2:分析偶数概率

\( Y \)为偶数的情况:

  • \( Y = 8 \)(偶数)
  • \( Y = 2x \)(总是偶数)
  • \( Y = 28 \)(偶数)
  • \( Y = 7x \)(当\( x \)为偶数时为偶数)
  • \( Y = 20 \)(偶数)
  • \( Y = 5x \)(当\( x \)为偶数时为偶数)

步骤3:分析\( Y \geq 20 \)的概率

\( Y \geq 20 \)的情况:\( Y = 28, Y = 20, Y = 7x \)(当\( x \geq 3 \)时),\( Y = 5x \)(当\( x \geq 4 \)时)

步骤4:建立等式

当\( x \)为奇数时:\( P(\text{偶数}) = \frac{3}{6} = \frac{1}{2} \)

当\( x \)为偶数时:\( P(\text{偶数}) = \frac{6}{6} = 1 \)

通过分析,当\( x = 3 \)时,\( P(Y \geq 20) = \frac{3}{6} = \frac{1}{2} \),满足条件。

当\( x = 4 \)时,\( P(Y \geq 20) = \frac{4}{6} = \frac{2}{3} \),不满足条件。

答案:\( x = 3 \)